When to Worry About the Growth Plates in a Young Athlete

-Jeff Webb, M.D.
• Kids Are Not Just Small Adults
Outline

- Pediatric Musculoskeletal System
- Salter-Harris Fractures
- Fractures Unique to Pediatrics
- Overuse Injuries/Apophysitis
Pediatric Musculoskeletal System

- **Bones**
 - Thicker periosteum
 - Increased stability and vascularity
 - More porous, less mineralized
 - More flexible
 - Open growth plates
 - Weak link
 - Generally heal quicker and better than adults
 - Have the potential for remodeling
Pediatric Musculoskeletal System

• Cartilage
 ▫ Softer/Thicker
 ▫ Greater vascularity, potential to heal

• Musculotendinous units
 ▫ Relatively Inflexible
 ▫ Fewer sprains and strains

• Apophysis
 ▫ Secondary growth centers at the site of tendon attachments
 ▫ Source of “growing pains”
Pediatric Musculoskeletal System
Growth

• No evidence that repetitive microtrauma on the epiphysis causes growth delay
 ▫ Need more studies
• Studies of size and longitudinal growth in athletes vs nonathletes have not shown any adverse effect with intense training
• Growth plate fractures can inhibit growth
 ▫ Evidence does not show more prevalence of these in athletes vs nonathletes
Pediatric Fractures

- Chance of a child 0-16yo sustaining a fracture during childhood is 42% for boys, 27% for girls
- Bones are relatively weaker, more prone to breaking than adults
 - Kids break bones, adults pull muscles/sprain ligaments
Pediatric Fractures

• Torus or “Buckle” Fractures
 ▫ Buckling of Cortex
 ▫ Fracture does extend all the way through
 ▫ Generally very stable and heal quickly
Pediatric Fractures

• Greenstick Fractures
 ▫ Fracture of one cortex of the bone with the other still intact
 ▫ Must be reduced if displaced and may move even after reduction
Salter-Harris Fractures

- Type I - Injury through physis alone
- II - Metaphysis and Physis
- III - Physis and Epiphysis
- IV - Metaphysis across physis and Epiphysis
- V - Compression of Physis

• Mnemonic
 - Slipped Epiphysis
 - Above Epiphysis
 - Lower than Epiphysis
 - Through Physis
 - Rammed Physis
Salter-Harris Fractures

- **Growing Bone**
 - Damage to physis can cause growth arrest resulting in shortened bone or angular deformities

- **Treatment**
 - Goal is anatomic reduction without inducing growth arrest
 - Generally increasing risk for arrest with increasing class
 - Type I and II generally do very well with half the healing time of pure bony injuries
 - Type III and IV require anatomic reduction due to involvement of articular surface
 - Type V have poorest prognosis but are rarest
Physeal Fractures

- Displaced or concerning physeal fractures need to be followed for several months after to look for growth arrest
- May look for “bone bar”
- Inform patient/parents of potentials
Patellar Sleeve Fracture

- Avulsion of distal cartilaginous portion of patella
- Age 8-12 yo
- Patella alta on exam and xray
- Small fragment separated from distal patella on radiographs
- MRI if dx questionable
- Nondisplaced → cast
- Displaced → Tension band or excision and tendon repair
Tibial Tubercle Fracture

- Tibial tubercle is anterior and distal extension of proximal physis
- Age 13-16 yo – typically just prior to physeal closure
- Classification
 - Type I – through distal ossification center
 - Type II – through jxn. Tubercle and tibial centers
 - Type III - involves articular surface
- Treatment: ORIF if displaced
Tibial Eminence Fracture

- Avulsion of ACL
- Age 8-14 yo
- Hyperextension or direct blow
- May have ACL stretch with fracture → mild residual instability
- Meniscus (medial) may block reduction
- Loss of extension biggest complication
Tibial Eminence Fracture

• Treatment
 ▫ Type I – Minimally displaced
 • Immobilize in cylinder cast 4-6 wks
 ▫ Type 2 – Displaced and hinged posteriorly
 • Attempt closed reduction with full extension
 • Cylinder cast in extension (some prefer 20-30 deg flexion to relax ACL)
 • Internal fixation if closed reduction fails
 ▫ Type 3 – Completely displaced
 • Internal fixation
Medial Clavicle Fracture

- Physis appears at ~17 yo, closes at 20-25 yo
- Presents like SC dislocation, treatment similar
- Posterior may compress mediastinal structures...dangerous!
 - Reduce with bolster b/w scapula, hyperextension of clavicle, and traction
 - May pull anterior with towel clip
 - Usually stable after reduction
 - 3-4 wks in figure 8 splint
 - No fixation
- Anterior dislocation
 - Often unstable after reduction
 - Remodels so do not require re-reduction
Pelvic Avulsion Fractures

- Mostly during adolescence (age 14 to 25)
- Sudden violent muscular contraction or an excessive amount of sustained muscle action across an open apophysis
 - Rapid acceleration or deceleration
 - Sprinters, jumpers, soccer, and football players
- Presentation: acute onset of pain, occasional popping sensation, localized tenderness
 - Can reproduce pain by passive stretch
- Many have history of previous apophysitis
Pelvic Avulsion Fractures

- Iliac Crest
 - Abdominals
- ASIS
 - Sartorius, Tensor Fascia Lata
- AIIS
 - Rectus Femoris
- Ischium
 - Hamstrings/ Adductor Longus
- Lesser Trochanter
 - Iliopsoas
Pelvic Avulsion Fractures

Ischium AIIS ASIS Iliac Crest
Pelvic Avulsion Fractures

• Treatment: Rest, crutches for 2 weeks, progressive rehabilitation to return to sports activity; position extremity to relax involved muscle group
• Progressive rehab program
• Complete healing in 6 weeks-several months
• Ischial Tuberosity - Open reduction and internal fixation of large fragments displaced more than 2 cm
Tilleaux and Triplane Fractures

• Distal tibial physis closes first centrally, then posteromedially, and last anterolaterally
• Results in Triplane and Tillaux fractures
• Actual articular displacement generally more significant than radiographs imply
• CT scan helps elucidate true articular deformity
• Articular incongruity rather than growth arrest is primary concern
• Require ORIF w/anatomic reduction
Pediatric Elbow Fractures

- Pediatric elbow fractures can be occult but serious
 - May cause cubitus varus or even vascular compromise
- Look for anterior and posterior fat pad elevation on Xray
- Obtain CT if diagnosis in question
Pediatric Elbow Fractures

- **Ossification Centers**
 - Capitellum
 - Radial Head
 - Internal (Medial) Epicondyle
 - Trochlea
 - Olecranon
 - External (Lateral) Epicondyle
SCFE (Slipped Capitol Femoral Epiphysis)

- Slippage through the hypertrophic zone of physis
 - Femoral head remains reduced
 - Neck displaces anterosuperior & external rotation
- Etiology
 - Idiopathic – most common
 - Endocrinopathy
 - Renal Failure
 - Prior Radiation therapy
SCFE (Slipped Capitol Femoral Epiphysis)

• Epidemiology
 ▫ Obese
 ▫ Positive FH
 ▫ African American
 ▫ Boys 60%, Girls 40%
 ▫ Mean age at onset
 • Boys 13.5yo
 • Girls 12yo
 ▫ 18-63% Bilateral
SCFE

- **Presentation**
 - Hip, thigh, or knee pain
 - Limited internal rotation
 - Out-toeing gait
 - Initial pain may be vague

- **Treatment**
 - Surgical reduction with percutaneous pinning
 - Contralateral fixation may be recommended
 - Return to play when physio closes and patient asymptomatic
 - Pin removal in athletes is controversial
Overuse Injuries

- Apophysitis
 - Osgood Schlatter
 - Sinding-Larsen-Johansson
 - Sever’s Disease
 - Iselin’s Disease
 - Little Leaguer’s Shoulder
 - Little Leaguer’s Elbow
Osgood Schlatter

- Separately described by Osgood and Schlatter in 1903
- Age of onset in boys 10 – 15 & girls 8 – 13
- Traction apophysitis of the tibial tubercle caused by repetitive microtrauma from a contracting extensor mechanism
- Incidence as high as 20% in athletic youngsters
- Occurs bilateral in 20 to 30% of cases
- Most common in basketball, volleyball, soccer, and gymnastics
Osgood Sclatter

• Clinical Presentation:
 ▫ Antalgic gait
 ▫ Swelling, prominence, and tenderness localized to the tibial apophysis
 ▫ No knee effusion
 ▫ Pain is reproduced by extension against forced resistance
 ▫ Pain with jumping, squatting, kneeling
Osgood Schlatter

- **Radiographic Findings**
 - Prominence of the tibial tubercle
 - Fragments of secondary ossification center of tibial tubercle may be displaced slightly anteriorly and superiorly
Osgood Schlatter

Treatment
- Reassurance
- Most able to tolerate symptoms and continue play
- Typically spontaneous resolution with closure of the physis; though may have residual tenderness with kneeling
- Knee Pad or cho-pat strap may be helpful
- Ice/NSAIDS
- Quadriceps and hamstring stretching
- Restriction of activities
- If painful after physeal closure, may be ossicle that is symptomatic into adulthood
- May predispose to risk of tubercle avulsion
Sinding-Larsen-Johansson

- Repetitive microtrauma
- Calcification/ossification at the inferior pole of the immature patella
- Most common before the prepubescent growth spurt and in males
- Aggravated by running, jumping, and stairs
- Clinical Presentation:
 - Tenderness at the inferior pole of the patella
 - Limp
 - Quadriceps tightness
 - Protective limited range of motion
Sinding-Larsen-Johansson

- **Radiographic Findings:**
 - Calcification or ossification at the inferior pole of the patella
 - Elongation of the patella

- **Treatment:**
 - Self-limited disease, Reassurance
 - Spontaneous resolution in 12 – 18 months
 - Modification of activities
 - Ice/NSAIDS
 - Lower extremity stretching program (quadriceps, hamstrings, and heel cords)
 - Patella knee sleeve, cho-pat strap
Sever’s Disease

- Described by Sever in 1912
- Calcaneal apophysitis
- Most common in 9-14 age athletes
- Bilateral: 60-80%
- Diagnosis
 - Heel pain with activity
 - Calcaneal apophysis tender
Sever’s Disease

• Radiographic Findings:
 ▫ Sclerosis/Fragmentation
 ▫ May be difficult to distinguish from normal as normal varies greatly
 • Often mistaken for fracture
Sever’s Disease

- **Treatment:**
 - Self limited, Reassurance
 - Heel cord stretching/Strengthening
 - Heel cups or shock-absorbing inserts (watch out for hard-soled cleats)
 - Ice/NSAIDs
 - Responds well to therapy, usually able to return to sports in 6 - 8 weeks or less
 - Differentiate from calcaneal stress fracture (medial lateral compression test)
Iselin’s Disease

- Apophysitis at the base of the 5th Metatarsal
- Presents with pain, swelling, limp
- Differential diagnosis includes Avulsion fracture or Jones fracture
 - Radiographically Iselin’s disease is represented by an oblique fragment on the lateral side of the metatarsal
 - Comparison view may be helpful
Iselin’s Disease

Iselin’s

Avulsion Fx

Jones Fx
Iselin’s Disease

• **Treatment**
 ▫ **Self-Limiting, Reassurance**
 ▫ **Ice, NSAIDs**
 ▫ **Stretching of lower leg muscle groups**
 ▫ **Rest, Activity Modification**
 • *Walking boot often helpful for a few weeks of rest and to limit activity*
Little Leaguer’s Shoulder

- Proximal Humeral Epiphyseolysis
- Throwers, 12-15 yo
- Tender to palpation at the proximal humeral physis, may have generalized shoulder tenderness as well
- Pain/weakness with resisted external rotation
- Xray may show widening of proximal humeral physis
 ▫ This may be normal finding in throwers however
- Treatment is 3 months rest from throwing
Little Leaguer’s Elbow

- Group of injuries to elbow in young throwers
 - Ranges from apophysitis to avulsion fracture to OCD of the capitellum
- Pain with throwing
 - May have acute injury
- Treatment is generally rest
 - Surgery for avulsion displaced >5mm
 - Surgery for OCD lesion with persistent pain/fragments
Gymnast’s Wrist

- Salter I fracture of the distal radius from repetitive trauma
 - May be bilateral
- Usually female 12-14
- Dorsal wrist pain, worse w/activity
 - Pain with extension/flexion
- Treatment
 - Rest from impact 2-4 wks for stage I
 - Cast for 4 wks for stage II (change on Xray)
 - Surgery for stage III (growth arrest)
The END!

Thank You